Modeling the Projected Changes of River Flow in Central Vietnam under Different Climate Change Scenarios
نویسندگان
چکیده
Recent studies by the United Nations Environment Programme (UNEP) and the Intergovernmental Panel on Climate Change (IPCC) indicate that Vietnam is one of the countries most affected by climate change. The variability of climate in this region, characterized by large fluctuations in precipitation and temperature, has caused significant changes in surface water resources. This study aims to project the impact of climate change on the seasonal availability of surface water of the Huong River in Central Vietnam in the twenty-first century through hydrologic simulations driven by climate model projections. To calibrate and validate the hydrologic model, the model was forced by the rain gage-based gridded Asian Precipitation–Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) V1003R1 Monsoon Asia precipitation data along with observed temperature, humidity, wind speed, and solar radiation data from local weather stations. The simulated discharge was compared to observations for the period from 1951 until present. Three Global Climate Models (GCMs) ECHAM5-OM, HadCM3 and GFDL-CM2.1 integrated into Long Ashton Research Station-Weather Generator (LARS-WG) stochastic weather generator were run for three IPCC–Special Report on Emissions Scenarios (IPCC-SRES) emissions scenarios A1B, A2, and B1 to simulate future climate conditions. The hydrologic model simulated the Huong River discharge for each IPCC-SRES scenario. Simulation results under the three GCMs generally indicate an increase in summer and fall river discharge during the twenty-first century in A2 and B1 scenarios. For A1B scenario, HadCM3 and GFDL-CM2.1 models project a decrease in river discharge from present to the 2051–2080 period and then increase until the 2071–2100 OPEN ACCESS
منابع مشابه
Climate change scenarios generated by using GCM outputs and statistical downscaling in an arid region
Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...
متن کاملSimulation of climate change in Iran during 2071-2100 using PRECIS regional climate modelling system
Parameters such as future precipitation, temperature, snowfall, and runoff were modeled using PRECIS regionalclimate modeling system in Iran with the horizontal resolutions of 0.44×0.44°C in latitude and longitude under SRESA2 and B2 scenarios. The dataset was based on HadAM3p during the periods of 1961-1990 and 2071-2100. Theoverall precipitation error of the model in the period of 1961-1990 w...
متن کاملIntegrated Planning of Water Resources Based on Sustainability Indices, a Case Study: Hamoon- Jazmorian Basin
Nowadays, the water supply and water demand management are the main issues in water resources planning. It is more important in a river basin with a complex system facing with droughts, climate changes, inter-basin water transfer and operational and under study dams. In this paper, for water resources planning in a river basin and reducing the difference between water resources and water demand...
متن کاملبـررسی پتـانسیل اثـرات تغییر اقلیـم بر خشکسـالیهای آینـده کشـور با استفـاده از خروجی مـدلهای گـردش عمـومی جـو
A Study of the Potential Impact of Climate Change on the Future Droughts in Iran by Using the Global Circulation Models as Outputs Gholamreza Roshan Assistant Professor in climatology, Department of Geography, Golestan University, Gorgan, Iran Mohammad Saeed Najafi MSc Student in Climatology, Faculty of Geography, Tehran University, Tehran, Iran. Extended Abstract 1- Introductio...
متن کاملContrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains.
Mountain ranges are the world's natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glac...
متن کامل